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Abstract

This document describes an algorithm for incremental parsing of expressions in the context of

syntax-directed editors for programming languages. Since a syntax-directed editor represents
programs as trees and statements and expressions as nodes in trees, making minor modifications in

an expression can be difficult. Consider, for example, changing a" +" operator to a -"- eoryi.
adi.j fortS8ui~expTe~ssion i a ayju, ii,,l, ybt-o....-cturaIl cor " " i.~., .~ a"isrll

"1 (d" at the # mark In-"(a -+ b -# 4- c)-.To make these changes in a typical syntax-directed

editor, the user must understand the tree structure and type a number of tree-oriented construction

and manipulation commands. This document describes an algorithm that allows the usar to think in

terms of the syntax of the expression as it is displayed on the screen (in infix notation) rather than in

terms of its internal representation (which is effectively prefix), while maintaining the benefits of

syntax-directed editing. The time and space complexities of the modifications for each new token are
linear in the depth of the syntax tree. .. -,

.I"i!
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1. Introduction

This paper describes an algorithm for incremental parsing of expressions in the context of syntax-

directed editors for programming languages. The algorithm currently handles expressions involving

only binary infix operators, but could be extended to n-ary operators and function calls and to

statements for languages that can be handled by a precedence parser. Our algorithm differs from

other incremental parsing algorithms in that it does not require the overhead of modifying a standard

parser or maintaining a parser stack or any data structure other than the syntax tree. Instead, the

algorithm applies tree transformations to maintain a correct syntax tree. The algorithm is table-driven

and language-independent. Based on the user's command (to insert or delete an operator, for

example) and the current state of the Internal syntax, the relevant members of a small set of tree

transformations are selected. Thus, after a token is inserted or deleted, transformations are

automatically applied to restore the syntax tree to a correct state in terms of its precedence

relationships and parentheses balancing.

Chapter 2 of this paper describes syntax-directed editing and provides motivation for our work.

Chapter 3 describes how the user interacts with the editing environment. Chapter 4 describes the

algonthm and gives several examples of its operation. Chapter 5 describes in more detail the

transformations performed by the algorithm. The final chapter describes possible extensions to

non-binary operators and statements and discusses our Implementation of the algorithm. The

appendix includes a summary of the precedence relations and the text of the full algorithm, minus

those transiormations best depicted by illustrations in Chapter 5.

IF•
. . . . .

- _ _-;-, - ' -- -- - - - -. -- - -
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2. Syntax-Directed Editing

A syntax-directed editor is a language-oriented editor in which programs are constructed and

modified according to the syntactic constructs of the language rather than by editing characters and

lines. A program is maintained internally as a syntax tree rather than as text. The text displayed on

the screen is generated as needed by unparsing the internal representation.'

Besides the program editor, the same syntax tree may be used by other tools in a software

development environment, such as semantic analyzers, intermodule consistency checkers, code

generators, source-level debuggers and program transformation tools. The syntax tree, perhaps

augmented with additional information, provides a uniform internal representation for these tools. In

the case of the Gandalf environment [4] and ISDS [1], the syntax-directed editor also provides a

uniform user interface for the integrated environment. The syntax-directed editor replaces both the

text editor and parser components of the standard programming cycle.

In the external textual representation displayed on the screen of a typical syntax-directed editor, a

cursor marks the node that will be te target of the next editing operation; the cursor is often

displayed by highlighting the entire subtree rooted at the current node. The user enters a program by

repeatedly selecting the template for the desired statement from the menu of templates legal at the

current cursor position. The editor constructs a node for the selected statement, Inserts it in the

program syntax tree at the cursor position and displays the template on the terminal screen.

A template Includes the concrete syntax, or "syntactic sugar", of the selected statement and leaves

place holders (meta nodes) for the components specified by its abstract syntax. For example, the

user might select the while statement by typing "w" and the editor would respond by displaying the

while statement 'on the screen and positioning the cursor (denoted in this paper by underlining) at the

first component. A meta node, which is a component of a template that has not yet been filled In, is

displayed as $type, where type is the class of nodes that can legally be inserted at that component.

while £nabn
do Sstatement;

Expressions, as well as statements, may be entered by selecting templates. This method of

expression entry is used in the ALOE system [6, 7]. For example, the user might select the less-than

expression by typing "."

Some synUx-direedm editors maintain a text buffer, with Unks between the taext and the coemonding nodes In the syntax
tee, ai odpay the It buffer rther thn unpuming the wee.

.. .. i~ :. .~i+ ? " i: .i .. . ii.+ .i /. - -.. . . .. .. , " .. .++ : " ..• " .7
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while Sexlnression < $expression
do $statement;

Variables and literals are entered by selecting the appropriate special template and then typing the

variable name or literal value, respectively.

Syntax-directed editing applied to expressions is not without problems. First, expressions must be

entered in (approximately) prefix notation rather than infix form even though the expression is

displayed in infix form. This representation seems unnatural to many users. Another problem is that it

is awkward to modify expressions. For example, to change "a + b c" into "(a + b) * c", the user

must either delete the original subtree and enter the desired subtree from scratch or perform a

tedious series of clip, delete, and insert operations that require the user to understand the internal

structure of the syntax tree.

One alternative exemplified by the Cornell Program Synthesizer [10] is to enter expressions as

strings. When the user signals that an expression is complete, it is parsed and the resulting parse

structure is inserted into the syntax tree. This allows the user to enter the expression in a natural way

while maintaining most of the advantages of syntax-directed editing. This approach requires a

complete reparsing of expressions that are modified in any way, which is relatively slow for large

expressions.

A third alternative is to enter expressions (or statements) as strings that are incrementally parsed

on entry. As the user enters the expression, the available input is parsed and each node is

constructed as soon as possible. In Wegman's algorithm for the IBM PDE1 L system [8, 11, 131 and

Ghezzi and Mandrioli's algorithm [2,31, the parser state is saved for each node in the Wintax tree.

Modifications are performed by entering the new string representation of the desired subexpression,

restarting the parse before the first new token and continuing the parse to the end of the new

subexpression. The user does not have to re-enter entire expressions or perform unnecessary

-i modifications to the syntax tree.

Morris and Schwartz [91 have taken a slightly different approach to incremental parsing. Their

algorithm maintains a series of parse trees for each expression, where a parse tree is split whenever a

modification occurs in the text it covers. The trees are patched back together using an extension of

traditional LL(1) parsing.

We have also taken an incremental approach, The differences between our approach and these

standard incremental parsing approaches are:
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1. We do not require the overhead of permanently maintaining a parser stack in addition to
the syntax tree. Our algorithm does not require any data structures other than the syntax
tree and its symbol table, both of which are already provided by the syntax-directed

editor.
2

2. We do not modify or extend a traditional shift-reduce or other type of parser that involves

matching productions. Instead, we use a small set of tree transformations that are
applied automatically as an expression is created and modified to keep the associated

E syntax tree in correct form with respect to precedence relationships and parentheses
balancing.

a Changes are reflected in the syntax tree immediately as they are typed in and converted
to tokens by a lexical analyzer. (The modified expression is displayed on the next screen
refresh.) Our algorithm does not produce a text representation of the program to be
modified, perhaps in several places, and then partially reparsed so the tree can be

updated; the text appears only on the display and is not stored (except on special
command for such purposes as producing hardcopy).

4. Our algorithm does not necessarily fail on syntactically incorrect input. In some cases,
new meta nodes or empty operators are inserted automatically to ensure the structural

integrity of the syntax tree. The user can fill In the missing subexpresslons later.

.4...... ... .. -do. N to.enen.be m. .oi..ed to reduce t cotn of cufo movement end unpe og.
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3. The User View of the Editing Environment

In this chapter we describe the aspects of the user interface (of a hypothetical syntax-directed

editor) that are relevant to our algorithm, including the cursor and the primitive operations provided.

The user sees the infix form of an expression displayed on the screen with a cursor highlighting the

current editing position (which corresponds to some node in the syntax tree). The editing operations

available to the user are.

* construct -- construct part of syntax tree;

* delete -- delete part of syntax tree;

* clip -. copy part of syntax tree to a buffer,

* insert -- insert contents of buffer into syntax tree;

* replace-- replace part of tree;

Other desirable editing operations that are not discussed in this document include swap,

undelete, mark and move. The cursor movement commands are:

* in (or down);

* out (or up);

* next (or right);

* previous (or left);

" root (or top).

How these operations actually modify the syntax tree and the cursor depends on the current editing

5l mode. Some of these commands are available only in some of the editing modes. There are three

editing modes: node, token and character. The mode command is provided to switch modes. Node

* -mode Is the standard (and sometimes only) editing mode of most syntax-directed editors and

character mode Is related to the standard editing mode of most text editors. In the algorithm

" presented here, we are primarily interested in token mode.
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* 3.1 Node Mode

Node. mode is tihe normal editing mode of a syntax-directed editor. The user constructs a syntax
tree by repeatedly selecting a template to be inserted at the current cursor position. The editor
checks the legality of the selected template at the current position, constructs the node
corresponding to the template, movesthe cursor to the first empty component (meta node) of the
template and displays tihe part of the syntax tree surrounding the new template on the screen. The

* cursor highlights the entire subtree rooted at the current node.

In this mode, in moves the cursor to the first child of the current node, out moves to the parent,
* next moves to the next sibling and pjrevious moves to the previous sibling. The root command
* moves the cursor to the root node of the syntax tree. The delete command deletes the entire subtree

rooted at the current node (the current cursor position). Similarly, clip copies a subtree to a buffer
* and insert replaces a meta node with the root of the subtree from a buffer. Replace replaces the

selected subtree with the subtree from a buffer; it corresponds in node mode to a sequence of more
primitive commands. In contrast to standard syntax trees, our algorithm requires tihe explicit

* presence of these parentheses in case the user later edits the expression in token mode, as explained
* below.

Although node mode is the most common editing mode in syntax-directed editors, it is only
peripherally related to the algorithm described in this paper. We present it as a contrast to token
mode, the primary editing mode relevant to this paper, and because tree modifications performed in
token mode must be compatible with prior and later modifications made in node mode. Each of the
different modes supports a slightly different type of modification of the syntax tree and is more
convenient than the others in certain situations.

3.2 Token Mode

In token mode, each operator, terminal, open parenthesis or close parenthesis is considered to be
a token. We assume that the tokens themselves are recognized by a table-driven lexical analyzer
provided by the syntax-directed editor. The portion of a syntax tree representing an expression is
normally constructed by repeatedly adding operator, terminal and parenthesis tokens to the right of
the current cursor position, which is some token in the expression (this mechanism is called the
construct after command, although typically the user types only the new token without giving any
explicit command). However, other editing operations allow the user great flexibility in modifying the

expressions (or partial expressions) that have been entered. We use a slightly non-standard
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terminology in this paper since we assume a syntax tree rather than a parse tree: a terminal is some

terminal element of the programming language that can occur as a leaf in a syntax tree, such as a

literal or identifier. Operators and parentheses are not considered terminals because these occur

only as the types of nodes, not as leaves, in a syntax tree.

The cursor motion commands available in token mode are root, right and left. The root

command moves the cursor to the root of the current expression; it does not move outside the

expression to the statement and procedure level. The user can switch to node mode for movement

outside the current expression. Right moves the cursor to the token immediately to the right in the

* left-to-right display of the expression; left moves the cursor to the token immediately to the left. The

cursor highlights only the current token.

The editing operations provided in tpken mode are given below.

*construct after: Operator, terminal and parenthesis tokens are repeatedly added to the
* rigyht of the current cursor position in the screen display. The user does not actually type

the construct after command; instead, she simply types the new token when the cursor
is at the desired position. Internally, the algorithm creates a new node, adds it to the
syntax tree and restructures the tree to preserve precedence relationships and
parentheses balancing. After the tree transformation is complete, the screen is updated
with the cursor at the new token.'

9 construct before: A token is added to the left of the current cursor position. The user
must give tie construct before command explicitly and only one token may be added
for each command invocation. This command is necessary for adding tokens to the
beginning of an expression.

* construct at: The cursor must be at a meta node or an empty operator. The given
token, if it is of the correct type, replaces the place holder and the expression tree is
restructured as necessary.

*delete: Typing the delete command removes the current token and restructures the
syntax tree as necessary. The cursor is moved to the token to the left of the deleted

* token, or to the right if there is no token to the left.

*replace: The current token is replaced with the given token, which must be of the same
type (operator or terminal), and the tree is restructured. The cursor is displayed at the
new token.

The clip and Insert commands are not provided In token mode because the effects can be easily
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provided by node mode commands. In addition, node mode should be used for moving entire.

subtrees.

3.3 Character Mode

Character mode is for editing the text of terminals and operators; both cursor movement and

editing commands are character-oriented. Character mode commands usually result in changes to

tokens that are then translated into token mode commands. Switching into and out of character

mode can be handled automatically. Character mode is not discussed further in this paper.
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4. The Algorithm

4.1 Overview

When editing expressions in token mode, the user normally adds characters at the end of the

expression and occasionally makes corrections by deleting and inserting tokens or sequences of

tokens in the middle of the expression. First we will look at a few examples of how the algorithm adds

tokens to the end of an expression, then we will see how tokens are inserted and removed from

arbitrary locations within an expression. Throughout this chapter, we use the term "insert"

interchangeably with "construct." Here, both terms'refer to the construct user command described

in Chapter 3 rather than to the Insert user command that ihserts the root node of a buffer into a

position in a program tree.

It is assumed that all operators are binary infix operators. Each type of operator has a right-

precedence and a left-precedence. A higher precedence means that the operator binds more tightly

* than an operator with lower precedence. For example, "a + b * c" means "a + (b c)" rather

than "(a + b) " c" because "0" hs higher precedence than " ." Left and right associativity is

:- 1submed by lt and right precedence relationships; for example, the right precedence of a left

asocWtie operator s greater than Its left precedence. A table of the operator precedences used in

*the examplei; presented in this paper is given in the appendix. Possible extensions to the algorithm

-. for non-binary operators, for function calls and for statements are discussed briefly in Chapter6.

The user's editing commands are reduced to a small set of basic tree-manipulating procedures,

Including structural transformations and cursor location changes. However, the user applies the

* - commands to the text display and need not be aware of the underlying syntax tree. Most of the

. transformations are introduced by example here first, then described more generally !n Chapter 5.

The rest of the full algorithm is given in pseudo-code in the appendix.

4.2 The Syntax Tree Representation
The syntax tree is represented in a straightforward tree data structure. The leaf nodes are either

terminals typed In by the user or meta nodes, Indicating that a terminal or subexpression is expected

but has not yet been specified. Intermediate nodes represent subexpressions consisting of an

operator or parenthesis (the exact type is stored at the node) and two operands. The operands are

stored as the left child and the right child of the node (there is only a single child for parenthesis
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nodes). In addition, each node contains a back pointer to its parent node. The internal

representation also includes a cursor variable which points to the node representing the token

highlighted on the user's screen. It appears to the user that the cursor points to a particular token,

rather than the entire subtree rooted at the node representing that token as in node mode.3

To achieve syntactic correctness, meta nodes and empty operator nodes are inserted and deleted

as needed. An empty operator is a place holder operator node that has at least one child that is not a

meta node. The operator may not have been filled in yet or it may have been deleted. Meta nodes are

displayed to the user as "$META" and empty operator nodes as "sOP." In addition, open
parenthesis, close parenthesis, and matched pair parentheses nodes are represented separately.

For example, if the user types "a + ( * b," which is syntactically incorrect, it is stored internally

and displayed as "a + ( $META * b," which Is correct but incomplete. If the user had made a

mistake in typing and wanted to correct it by deleting the " " or "" operator; the "$META" node

would be deleted as well. The expression "a + ( $META b" with the "b" token highlighted is

stored internally as illustrated. below. The cursor is a pointer to the "b" node. (In this paper, the

cursor position is indicated by underlining.)

/ \

/ \

SNETA j
Figure4-1: Syntax tree for "a + ($META b."

4.3 Syntactic Correctness

A structurally correct expression tree is always maintained internally. In such a tree, all binary

operators have exactly two children, all parenthesis nodes have exactly one child and terminals and

meta nodes have no children. As described above, meta nodes and empty operators may be needed

to maintain correctness. Tokens to the right (left) of a token In the display correspond to nodes that

are right (left) ancestors of the token's node or descendants of these right (left) ancestors or right

(left) descendants of the node itself.

3in node mode, the entire ubxwesulon would be highlighted, for exm*, by a urroundn rectangle in reverse video.
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.:E. To determine the left and right ancestors of a node, perform the following: Start at the node. If it is.
the left child of its parent, then the parent is one of its right ancestors; if it is a right child, then the
parent is a left ancestor. This is repeated, comparing the grandparent and parent of the start node

similarly. Right and left ancestors are those ancestor nodes to the right or left, respectively, of the

current node. For example, see Figure 4-2.

oP0
/ \

£ OP1
/ \OP2

/ '
OP3 d

/ \

b c

Figure 4-2: The right ancestors of "b" are OP1, 0P2 and OP3. OPO is a
left ancestor.

A correcttree also satisfies the constraints that the right-precedence of every operator node is less

than the left-precedence of its right child and that the left-precedence of every node is less than the

right-precedence of its left child. The preceding constraint only applies when the children are

operators; meta nodes, terminals and parenthesis nodes are also correct as children of any operator

node.

Parenthesis balancing is an additional constraint. In a property balanced tree, all tokens to the

right of an open parenthesis (but before any matching close parenthesis) in the display should be

descendants of the open parenthesis node (or the matched parenthesis node). Similarly, all tokens to

the left of a close parenthesis (and after any matching open parenthesis) should be descendants of

the close (or matched) parenthesis node. All nodes that are descendants of a matched parenthesis

node should of course lie between the matching parentheses In the display. A properly balanced tree

need not be complete: thus, some parenthesis nodes may be unmatched.

Consider for example, the correct syntax tree for "a (b * d * ) f t t h" shown In
Figure 4-3. Note that all the nodes that correspond to tokens appearing after the "d" in the display

are right ancestors or their descendants and all those that correspond to tokens appearing before are

left ancestors or their descendants (open parentheses are considered left ancestors and close

parentheses are right ancestors).

L-
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5.I.+

a

Figur 4- 3:Cretsna*refr a+b+cde ftth

I / \

,:I \ I'\

/ , I \
b- ' I I

€ d

Figure 4-3: Correct syntax tree for"a + (b + c" d" e) ftgth"

The tokens between, the parentheses in the display of Figure 4-3 all lie below the matched pair node

and, within that subtree, the first " node lies below and to the left of the "+" node because it has

greater precedence and appears after it. The second " *" node within the parentheses lies below and

-- to the left of the first because the right precedence of "" is greater than its left precedence. On the

other hand, the first "t" node lies above and to the left of the second one because the right

precedence of "t" is less than its left precedence. The precedence values of all operators used in the

examples in this paper are given in a table in the appendix.

Suppose the close parenthesis were after the "f" rather than after the "o," giving

"a + ( b + € "d • 0 f ) t g t h." In this case, the tree would not be correctly balanced because the
"" and the "f" that would appear between the parentheses are not below the parenthesis node. The

correct syntax tree is given In Figure 4-4.

+h

/ \~

b

-I \

l / d

Fiur 4-4 Corcsna trefr"h b+cdeftgfh

', / '

-6 / '

k"~~~Figure 4-4: Correctsyntx efr~ a (b+ b€d ef)tgth"

4.4 Construct at End of Expression

In the typical case of adding tokens to the end of an expression (the construct after command),
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the algorithm updates the syntax tree by inserting the new token at the cursor location,4 then

comparing the new token and 'its parent to make sure that precedence relations are satisfied and

restructuring the tree if they are not. When adding an operator to the tree, a meta node representing

the second operand is always added (the first operand is the node previously pointed to by the

cursor). When a terminal is added to the end of an expression, the cursor must be pointing to a meta

node, an operator node whose right child is a meta node that the terminal replaces or an open

parenthesis node whose child is a meta node. In each case, the cursor is reset to highlight the new

token.

For example, consider what happens when the user types in the expression "a + b 'c."

1. The syntax tree is initialized to a single meta node with the cursor pointing to that node.

(This meta node is actually a child of some statement in the program being constructed,

but we will describe the algorithm as if the expression were itself the root node of the

tree.)

Figure 4-5: Root meta node.

2. When the "a" is encountered, the algorithm replaces the meta node with the identifier
a" and the cursor stays pointing at that node.

A

FIgure 4-6: Meta node replaced by Identifier "a" node.

3. After the" " is typed, a new node is created. The new node is a" '" node whose left
child is the "a" node and whose right child is a meta node. The cursor location is the
"+" node. Since this node has no parent (in the expression), no further restructuring Is

considered.

a SMETA

FIgure 4-7: Addition of operator node.

4. When the "b" is typed, it fills the mete node that is the right child of the current cursor

location (the" " node) and the cursor is moved to the "b" node.

4The new token is always added at the bottom of the bee, and then migrated upwards to it corrwect position. the lokeni a
" harmnal It Is added to a leaf node, otherwise It i added as the parent of an exWng leaf node or a ew meta node. N tokens

were not added at the bottom of the tree, our algorthm would have to be more complicaled to consider the poel of
migratn the new node downwards s wall.

- -.- _ --
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/ \

Figure 4-8: Child meta node replaced with identifier "b" node.

5. When the " e" is encountered, the same process happens as for the " ." A new node is

created to replace the "b" node and becomes the right child of "b"'s parent. The new
" node has the "b" node as a left child and a mete node as the right child. Since we

now have an operator node with a parent, we must consider restructuring. However, In

this case the left-precedence of the "operator Is greater than the right-precedence of

the "+" operator, that is, "" binds more tightly than "," so no changes are needed.

/ \

I \

b SMETA

FIgure 4-9: Addition of child'operator node.

6. Finally, when the "c" is typed, it fills the meta node that is the right child of the "" node

(the current cursor location) and the cursor is moved to the "c" node.

;- / \~

, •*/ '.

*, b £

Figure 4-10: Child meta node replaced with identifIer "o" node.

This example illustrates two very simple transformations, fill and nestlef. Fill simply replaces a

meta node by another node such as a terminal. This occurs in steps 2, 4 and 6. The nestleft

! transformation, which occurs in steps 3 and 5, replaces a given node by an operator node and the

node becomes the left child of that operator. In any transformation, when a node "A" with parent

* "P" Is replaced by a node "B," the parent and child links are updated so that "P" becomes the

parent of "B" and so that "B" becomes the right (or left) child of the parent, just as "A" was. These

* transformations are Illustrated in more detail In Sections 5.1 and 5.2.

Suppose Instead the user types "a 0 b + c." The first four steps are analogous to those for the

previous example. However, in the fifth step a reorganization of the tree is needed since the left-

precedence of the new"." node is less than the right-precedence of the parent "" node. After the

usertypesthe" +," the new operator node Is added as usual.

.ti f :i .a.......................................................... :::: : : * -:
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-i"/ '
,:'. a ±*
. /\

b $META

Figure 4-11: Addition of child operator node.

However, since the precedence constraints are not met, restructuring is needed. What happens is

that the tree is transformed so that the new, lower precedence node (" + ") replaces the the higher

precedence node (" * "), and the higher precedence node becomes the left child of the new operator.

The left child of the new operator becomes the new right child of the higher precedence node. The

cursor stays at the most recently added node,".." The result is:

/ \

SNETA

a b

Figure 4-12: After restructuring.

The last step is wat the "c" fills the met& node as before. (The actual construct after algorithm is

given in pseudo-code in the appendix.)

The restructuring just described Is a very basic transformation called the twiddleright

transformation. There is also a twiddleleft transformation that is similar, but swaps the left child and

Its parent operator rather than the right child and its parent. These transformations are illustrated in

Section 5.4. There are many transformations given in this paper that have both xxxleft and xxright

forms. In general, the former involves the left child of an operator and the latter involves the right

child. The two transformations are mirror-images of each other.

If the higher precedence node had a parent, it would be compared with the new node, now its child,

in the same fashion. For example, suppose the user types "a - b t c - d." The first six steps are

analogous to those In the first example, since the left-precedence of the "t" operator is greater than

the right-precedence'of the "-" operator. When the second "-" token Is typed, the new operator

node s created and a nestleft performed.

.:."... . .- ,- ":," " -.........,. - '- .... ....... ,..-.'" "-: . . . .
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/ '
& t

/ \
b -

/ 

\

c SMETA

Figure 4-13: After nestleft.

Then the new operator node is compared to its parent. Since the right-precedence of "t" is greater

than the left-precedence of "-," a twiddleright is performed.

/ '

/ \

SMETA

.'-b C

aeure4-14; After first twiddleright.

The operator node is now compared to its new parent. Since the right-precedence of "-" is greater
than its left-precedence, that is, . " s left-associative, another twiddleright is performed.

- SNETA
/ \

a tiil / '
b C

Figure 4-15: After second twiddlerghL

Since the new "-" node is now the root of the tree, the procedure halts. Finally, the "d" fills the

meta node.

This whole process of repeated comparisons and twiddles (and some other transformaton

described later) Is called the rippleup procedure. Whenever this process begins, the entire tree with

the possible exception of the newly added operator satisfies the precedence constraints. The only

possible violation the twiddle transformation creates (since It guarantees that the constraints between

the new operator and its original parent are now correct) is that the precedence relationship between

the new operator and its new parent may be incorrect. This s exactly what rippleup checks. The

rippleup process continues until all precedence relationships are correct. This process is described

In detail In Section 5; It Is also given in pseudo-code in the appendix.
Il
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In the actual algorithm, an optimization is made to avoid doing the twiddle transformations one by.

one. Instead, the node at the bottom is checked in turn against a chain of opera tors, all going in one

direction (all left or all right ancestors) and then inserted only when the proper location is found

according to the constraints or when the direction of a chain changes. This process is called the

macrotwiddle transformation. An example of this is given later in Section 4.5.

Parenthesis balancing is similar in some ways to correcting operator precedence relationships.

* Inserting an open parenthesis at the end of an expression is quite simple. There are two cases: (1)

the open parenthesis follows an operator or another open parenthesis and (2) the open parenthesis

follows a terminal or a close parenthesis.

In the first case, the open parenthesis is nested onto the token immediately to its right in the display

and this token becomes- its child. The open parenthesis is then migrated up the expresEo0 tree toit

correct position using the rippleup process: rippleup handles parentheses balancing as well as

precedence constraints. The second case syntactically incorrect and triggers an error message.

* Syntax errors involving parentheses are not corrected because of the ambiguity with function calls

and array references. For example, the user probably intends an identifier followed immediately by an

open parenthesis to represent a function call rather than a binary expression with a missing operator.

Inserting a close parenthesis at the end of an expression is also simple and approximately

symmetric to the open parenthesis case. The two cases are: (1) the close parenthesis follows a

terminal or another close parenthesis and (2) the close parenthesis follows an operator or an open

parenthesis. For the syntactically correct first case, the close parenthesis is simply nested onto the

cursor (the terminal or close parenthesis), which becomes Its child, and then rippled up the tree to its

correct position. The second case is not permitted.

Suppose the user types in "a b (bc d dV The steps are as follows.

1. After "a "has been typed, the syntax tree Is:

a SNETA

Ffgu re 4-16: Syntax tree aftr"a Is typed.

2. When the "C" is typed, It nests onto the mets node, which is the token Immediately to the
right of the current cursor location (the"* node). The. cursor is moved to the new"C
node.
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I r a

$META

Figure 4.17: Nest the child meta node in an open parenthesis node.

3. When the "'b" is encountered, it fills the meta node child of the open parenthesis and the
cursor moves to the "b" node.

a

Figure 4-18: Meta node replaced by Identifier "b node.

4. Then".c 0 d" Is typed and the agorthm continues aspreviously. The cursor is
placed at the "d", the last token typed.

b

Figure 4-19: After "a b , c d"Is typed.

5Finally, when the is" asdded, first a n~eteand then a rppleups performed.

a. First the parenthess Isnested onto the node Indicated by the current cursor

position

i.

b

d

Figure 4-20: After nesteft

b. The rippleup process now compares the"Y parenthesis with its parent. Since the
parent Is an operator, a twiddlerght Is performed. Actually, the twiddle
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transformations are not defined for parenthesis nodes. Instead, the
macrotwiddleclose transformation is used for both this and the following step, to

perform the equivalent of a series of twiddles:

/ \
a (

/ \

b

I

c d

Figure 4-21: After first twiddleright.

c. It then compares the ")" parenthesis with its new parent. Since the parent ("+")

is again an operator, another twiddleright is performed (conceptually).

a (

I\

b

C d

Figure 4-22: After second twiddleright.

d. Now the parentheses must be matched, using the matchparens transformation.
This transformation folds the two parenthesi6" nodes into a single matching
parentheses node. The cursor is moved to the new combined node with an internal
notation that it is at the close parenthesis side. The rippleup is now complete. If

the matching open parenthesis had instead been part of a matched parenthesis

node, then rippleup would have been applied recursively to the newly unmatched
close parenthesis node from which the open parenthesis was "stolen" and to the

original child of the newly unmatched parenthesis node, since its migration up was

previously halted by the matching parenthesis.

F.
k-

Li
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I \
a (.I

I \

b
/1 \

c d

Figure 4.23: After matchparens.

The macrotwiddle family of transformations is described in detail in Section 5.6.
Matchparens is described in Section 5.8.

Constructing at the end of an expression is really just a special case of constructing in the middle

or at the beginning of an expression. It was described first so that the transformations would be
easier to understand. In the next section we give some examples of inserting new tokens into the

middle of an expression, then in the next chapter we discuss how the transformations are

* generalized.

4.5 Construct Within an Expression

Inserting tokens in the middle of an expression is more difficult than adding them at the end

because all the tokens that occur after the inserted expression may change their position in the

syntax tree. To avoid reparsing the entire remaining input, the new token is added at the bottom of
'- the tree and the effect is migrated up using the rippleup process. The token Is added at the bottom by

. finding the leaf node whose token immediately follows the current cursor location.

For example, tM add a specified operator after a terminal (or close parenthesis), do a nestleft of the

4 terminal (close parenthesis), then nppleup. Suppose the current expression is "a t b * * d + 9,"
and suppose the user wants to insert" 4. g" after the "b." Then the user moves the cursor to the "b"

and types ." Before the construct after, the syntax tree is as follows.

C

, / \

d
/ \'-

t C

a k
Fi

' Figure 4-24: After moving the cursOr to "b.",
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After nesting the new"+" operator, the tree is:

4.

/ '

/ \

d
/ \

t C
/ \

a +
/ \

b $META

Figure 4-25: After a nestleft of the "b" into the operator" +."

Next, the macrotwiddlenght transformation is applied. This transformation looks at nodes that

correspond to operators that appear to the left of the new operator in the display and restructures the

tree if necessary. In the syntax tree, the operators to the left are found in the chain going upward

from the parent of the new operator (in this case, only the single node "t"). The search stops when a

node is found whose left precedence is less than the right precedence of the new operator (or it stops

at the root or when the chain stops going up to the left). The new node belongs below the stopping

point. In this case, the node found is the grandparent node "e."

As shown in Figure 4-25, the new operator node is then brought up to be the right child of this

stopping node. Its old parent (the "t" node) becomes the new node's left child, and the old left child

becomes the right child of the old parent.

/ '

/ '

d/ '

+. CI. *\

* SMETA
/ \

a b

Figure 4-26: After macrotwiddleright.

Since the chain of ancestors is now to the right, the macrotwiddleleft transformation is applied. In
this case, the stopping node is the root node"+." The new operator node is then brought up to be

the left child of this stopping node. All the nodes between the stopping node and the old parent are

brought down to be the right children of the new operator, and the leftmost grandchild is set to be the

meta node that was previously the right child of the new operator. The result is illustrated in Figure

4-26.

F'
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/ '

/ \
t a,

/ \ I A
a b * d

/ \
SMETA c

Figure 4-27: After macrotwiddleleft on the new" +" node.

To add a terminal after an operator (or open parenthesis), first find the right adjocent terminal. If it

is a meta node, fill it with the terminal, otherwise do a nestleft of it into an empty operator.

Inserting parentheses in the middle of an expression is a bit more difficult since we need to find

matching parentheses and bring them adjacent, which may change the pairing of other paientheses.

If an open (close) parenthesis is added to the middle of an expression, it is nested above the following

(preceding) terminal, then the rippleuip process is applied until another parenthesis-type node is

found. The special parenthesis transformations -- macrotwiddleopen/close and matchparens -- are

used in the rippleup process.

Ccnsider inserting an open parenthesis after the cursor in "(a. b + c) t d."

1. First the open parenthesis is nested onto the "b" terminal node at the bottom of the tree.
I' t

.,:/ \
() d
/ \'

/ '

a L*I
b

Figure 4-28: After nest of "(."

2. Now the macrotwiddleopen transformation is applied to migrate the new open

parenthesis up to its correct position and change the relative positions of the "" and
"+"operators.
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d
b \

th "

/ '\

e. 4.
/ \

b

Figure 4-29: After macrotwiddleopen.

. Now match parens is applied to find the close parenthesis matchingthe new open
parenthesis. This parenthesis is "stolen" from the matched parenthesis node higher in

the tree.

b

/ \i d

:i / i'

Figu re 4-30: After parentheses are matched.

4. Since the close parenthesis was "stolen", the matchparens transformation now invokes
the rippleup process twice, first on the newly unmatched parenthesis node and then onit originalcilis childoeore he firt rplup a ivkd)-h ,rs in oto
migrates the open parenthesis to the root of the expression. The second rippleup
twiddles the "'" and "t" operators into their correct precedence" relationship. The
insertion of the new open parenthesis node is now complete.

(
S

• ./ '

L)

.
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4.6 Other Construct Commands

* In addition to construct after, the construct before and construct at commands are also

provided. In general, construct before is symmetric with construct after, since the token is
inserted before the current cursor position rather than alter it in the display. To perform a construct

at, the cursor must be at a meta node or an empty operator. Typically, the new token is nested onto
* the meta node and then rippled up the expression tree. Similarly, a new operator token may replace
* an empty operator and be rippled up to its correct position. The algorithms for these two commands

are given in the appendix.

4.7 Delete

The delete command causes the highlighted token to be deleted. It is not possible to delete a meta

node or empty operator node unes it is adjacent (in the display) to an empty operator or a meta,
respectively; otherwise, the expression would become syntactically incorrect. In addition, sometimes

these nodes are automatically removed from the tree to maintain the syntax structiure when another
token is deleted. After the delete occurs, the tree is redisplayed with the cursor at the token to the left

of the deleted token, if there is one, and to the right otherwise.

In the case where the highlighted token is an operator, the algorithm checks whether there Is an
* adjacent meta node on either side of the operator. If so, it performs a co/la Pselelt or col/apseright

transformation to remove both the operator and the meta node. Otherwise, it replaces the operator

with an empty operator node.

Consider the expression "a $ META *b" with the cursor at the". node.

b

a SNETA

Figure 4-32: Syntax tree for "a $ META.. b." -

When the +. token is deleted, both the "$META" and + " nodes are removed using the
cot/a pseright transformation. First, the ."operator node is replaced with its left child, the". ha

* right child is held aside.]
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b
I'

MAa TA

Figure 4.33: Children of the deleted operator node.

Then the meta node is replaced by the operator's right child. If the "." operator node had a

parent, a rippleup would be performed.

a .b

Figure 4-34: After collapseright.

The algorithm is similar in the case of a terminal. If there is an adjacent empty operator, both are

removed using a collapse transformation. Otherwise, the terminal is replaced with a meta node.

In the case of an open parenthesis, the parenthesis node is removed and the rippleup

transirrmation is performed on its child to correct precedence relationships. In the case of the open

half of matched parentheses, the same transformation is performed. In addition, the new close

parenthesis is migrated up the tree using rippleup in order to balance parenthesis. If a matching

parenthesis is not found, the close parenthesis migrates to the highest legal position in the tree. The

delete of a close parenthesis or the close half of matched parentheses Is symmetric.

The full delete algorithm is given in pseudo-code in the appendix.

4.8 Replace

The other editing operation available in token mode is replace, which is defined only for an

operator token. The operator node is replaced with the new operator, retaining the same children.

Then the rippleup transformation is applied to the operator node. If no changes are made, this

indicates that the portion of the tree above the node is consistent. It may be the case, however, that

the new operator has a higher precedence than one of its children, so the rippledown transformation

is then applied to the operator node.

If the left child of the operator is itself an operator, the rippledown transformation compares the

left-precedence of the operator to the right-precedence of the left child. If greater than, it performs a

twiddleleft and continues the rippledown. The case for the right child is similar. A more detailed

description of rippledown Is given in Section 5.10; rppledown is also given In pseudo-code in the

appendix.
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For example, consider the expression "a * b c + d" with the cursor at the leftmost" ." node.

+ d
/ \

S C
/ \

a b

Figure 4-35: Syntax tree of "a b . c . d."

The user gives the replace command and types "t." Rippleup is applied first. The "t" operator

has a higher right-precedence than the left-precedence of" ," so the rippleup fails.

Then rippledown is applied. Since the "t" has a higher left-precedence than the right-precedence

of the "0" operator, the twiddleleft transformiation is applied and the "t" node becomes the child of

Sthe "'" node, which in turn becomes the child of the remaining "+" node. Since all children of "t"
are now identiflers, rippledown halts.

/ ' / \

± d * d
/ a

/ \ / '
a b b €

Figure 4-36: Before and after rippledown.
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5. Summary of the Transformations

This chapter describes each of the transformations performed by the algorithm and some

constraints preserved by the transformations. First, we present the simple transformations: fill, nest,

unnest and twiddle. Then we give the more global transformations: collapse, macrotwiddle and

" matchparens. Finally, the rippleup and rippledown processes are presented. The global

transformations and these two processes invoke each other recursively. The rest of the full algorithm,

(the part of the algorithm that selects among these transformations and applies them to the

expression tree) is given in the appendix.

5.1 Fill

The fill transformation simply replaces a meta node with a new node denoting a terminal,

parenthesis or operator.

<parent) (parent>

SNETA <new>

FIgure 5-1: Before and after flling SMETA with (new>.

If the new node is a parenthesis or an operator, the parentheses in the expression may no longer be

- balanced and the precedence relationships may no longer be consistent. There is a process called

rippleup, described in Section 5.9, that calls other transformations to re-establish these relationships.

- 5.2 Nest

There are two flavors of nest: nestleft and nestright. Both forms of nest take two arguments, a node

*and a type. They zreate a new operator or parenthesis node of the given type and insert It between

the given node and its parent. Nestleft makes the given node the left child of the new node and

nestright makes it the right child of the new node. The other child is a meta node. If the new node is a

parenthesis node, nestleft and nestright are identical and make the argument node the child of the

*1 new parenthesis node. In either type of nest, If the node was the left child of its parent, then the new

node becomes the left child of the parent, and similarly in the case of right child.

,o
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(parent) (parent)
I I

(node) <OP)
- / '

(node> $META

Figure 5-2: Before and after nestleftof <node> and <OP.

(parent) (parent)I I
(node) (OP)

SMETA (node)

Figure 5-3: Before and after nestrlght of (node> and <OP.

Since nest creates a new operator or parenthesis node and inserts it into the tree between two

other nodes, the relationships between the node and its new child (and further descendants) and

- between the node and its new parent (and further ancestors) may be incorrect.

in all cases where the nest transformation is used by the token mode algorithm, the argument

. <node> is a terminal; thus the relationship between it and the new <OP> node is correct and there are

*: no further descendants. The rippleup process Is used to correct the ancestor relationships of the new

node.

5.3 Unnest

Unnest is the Inverse of nest. Unnestlett deletes the given node and replaces it.with its left child.

Unnestright deletes the given node and replaces it with its right child. in both cases, the other child is

assumed to be a meta node or otherwise undesired. These transformations are exactly the inverses

of those shown in Figure 5-2 and Figure 5-3.

After the unnet transformation has replaced a node with its child, the relationships between the

child and its ancestors may be incorrect and must be checked by the rippleup process. However, the

relationships within the subtree rooted at the child remain consistent.

5.4 Twiddle

Now we come to the first interesting transformation. The twiddle transformation modifies the

structure of the tree by changing the relative positions of three nodes. It does not construct or delete

any nodes.
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Twiddleleft changes the relative positions of an operator node and its left child, which must also be

an operator. The third node involved is the right child of the left child. Let's call the operator node

"OPi," its right child "Ni," and the pair and Ni's descendants "subtree 1." Call the left child "OP2,"

call its left child "N2," and call the pair and the descendants of N2 "subtree 2." The right child of OP2

is "N3," which together with its descendants is "subtree 3." The parent of the operator node is called
op."

* In the twiddleleft transformation, the root of subtree 2 replaces the root of subtree 1 as the child of

* node P. The root of subtree I replaces the roct of subtree 3 as the (right) child of subtree 2 (of OP2).

* The root of subtree 3 replaces the root of subtree 2 as the (left) child of subtree 1 (of OP1). In each
case, the rest of the subtree is carried along with its root. Basically, the twiddleleft transformation

changes the left association of the relevant operators to right without changing the order of the

leaves.

p p

OPt N OP1

HZ M@ V

Figure 5-4: Before and after twiddleleft applied to OPI.

Each of the three subtrees described above is internally consistent at the time when the twiddleleft
is applied, although the relationship between OP1 and OP2 is incorrect. The internal consistency Is

not changed by the transformation. However, after the twiddleleft is performed, OP2 may in turn be in

the incorrect position relative to the parent node P, so further transformations may be necessary until

OP2 has migrated up to its correct position. It is also possible that N3 and OPI are not in the correct

relationship. When twiddleleft is applied by rippleup from the bottom up, N3 is always either a

terminal or a node that was adjacent to OPI before a previous twiddle, so the relationship is actually

correct. When twiddleleft is applied by rippledown, it is exactly the relationship between N3 and OP1

that is checked.

The twiddle transformation of course maintains the correct right-left positions of all nodes. For

example, before the twiddleleft OP1 had right descendant N1, and left descendants N3, OP2 and N2.

After the twiddleleft, N1 is still a right descendant, N3 is now a direct left descendant, OP2 is a left

ancestor and N2 is a left descendant of a left ancestor. Similarly, OP2 is transformed from having

right ancestor OPI and right descendants N3 and Ni to having all three as right descendants and N2

remains a left ancestor. Note that the leaves are maintained in the original left-to-right order.

- - -- - - - - - -
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Twiddleright is the mirror image (and the inverse) of twiddleleft. It changes the relative positions of

an operator node and its right child, which must also be an operator. The third node involved is the

left child of the right child.

Pj
.1

Figure 5-5: Before and after twiddleright applied to OP1. A

5.5 Collapse i
The two collapse transformations rhay be used when an operator or a terminal is deleted. If an

empty operator and a meta node are adjacent in the display, the transformations remove both of them
from the tree. Coilapseright removes a meta node and its right adjacent empty operator while

collapseleft handles a left adjacent empty operator.

Collapseright replaces the operator with its left child (which may or may not be the meta node,

since the meta node may be a distant descendant) and then replaces the meta node with the

operator's right child. If the meta was in fact the operator's left child, this has the effect of an -

unnestright transformation, the inverse of a nestright. Otherwise the effect is equivalent to performing

a rippledown on the empty operator (the empty operator has a higher precedence than any other

operator), which will make it the parent of the meta node, and then performing an unnestright.

Finally, a rippleup must be performed on the former right child, which has replaced the operator, In -*

order to restore precedence constraints. "

<parent> <parent)I !
<empty operator) No -

/ '

NO <child) TO
* Ni

TO .

Mi Ti <child>

TI* SiETA

Figure 5-6: Before and after collapseright of <empty operator> and $META.

The collapseleft transformation is the mirror-image of collapseright.
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<parent> <parent>I I
<empty operator> NO/ \

<child> NO TO

TO
Ni <child) Ti

SNETA ri

Figure 5-7: Before and after collapseleft of (empty operator> and $META.

5.6 Mac rotwiddle for Operators

The macrotwiddle family of transformations is used by the rippleup transformation described in

Section 5.9. Macrotwiddleleft and macrotwiddleright are similar to the two twiddle transformations in

form, but may involve nodes that are not adjacent in the tree. They are equivalent to performing a

series of twiddle transformations. Macrotwiddleopen and macrotwiddleclose enable parentheses

balancing by rippling unmatched parentheses through the tree.

Macrotwiddleleft, like twiddleleft, is a transformation on three subtrees to correct inconsistencies in

operator precedence relationships. Since macrotwiddleleft is called from within rippleup, the
* operator node in focus is analogous to "OP2" of the twiddle transformation. As.before, we will call its

* left child "N2," and call the pair and the descendants of N2 "subtree 2." The right child of 0P2 is
* "N3," which together with its descendants is "subtree 3." Call the parent of OP2 node "OPO." Now

rather than simply comparing 0P2 to its parent, we will look up the chain of operator ancestors until
7 we find one whose left precedence is less than the right precedence of 0P2, 6r until the chain

reaches the root or stops going up to the right. Let's call the operator node at this stopping point

-.: "OPI," its right child "NI," and the pair and Ni's descendants down to OPO "subtree 1." It is

possible that OP1 is the same node as OPO. The parent of OP1 is called "P."

As in the twiddleleft transformation, the root of subtree 2 (0P2) replaces the root of subtree 1 (OP1)

as the child of node P. The root of subtree 1 (OP1) replaces the root of subtree 3 as the (right) child of

OP2. The root of subtree 3 replaces the root of subtree 2 as the (left) child of the leftmost operator in

subtree 1 (OPO). In each case, the rest of the subtree is carried along with its root.

I . .. , -
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'.- "p p

P --

OPI P

Figure 5-8: Before and after macrotwiddleleft of OP2.

Macrotwiddleright is the symmetrical transformation applied from nppleup when an operator is a

right child of its parent operator.

p p

OP N2

Figure 5-9: Before and after macrobAwiddght on 0P2.

5.7 Mac rotwiddle for Parentheses
Macrotwiddleopen and macrotwiddleclose are similar to the left and right macrotwiddle

transformations but are used to restructure the tree to migrate parentheses to the proper locations.

They too are called by the rippleup procedure (after matchparens has checked for any matches).

These macrotwiddles do not check precedences along the chains since they assume those are

already correct.

Macrotwiddleopen moves subtrees that are above an open parenthesis down below iL Uke

macrotwiddleleft, it is a transformation on three subtrees. However, the second subtree is more

inclusive than the previous form, which included only operator OP2 and its left descendants. Here

again we call the operator that is the first right ancestor in the upward chain "OPO." Its left child,

which also is the leftmost ancestor of the open parenthesis, is called "OP2," and 0P2's left child Is

-- Ucalled N2. Together, 0P2, N2, all N2's descendants, glua all of 0P2's right descendants down to and

including the open parenthesis is called "subtree 2." The child of the open parenthesis is "N3,"

which together with its descendants is "subtree 3a" Again, we look up th" chain of ancestors of OPO

(but without checking precedences) until we find a parenthesis node, or until the chain reaches the

root or stops going up to the right. Let's call the operator node at this stopping point "OPi," Its right

child "NI," and the pair and Ni's descendants down to OPO "subtree 1." It is possible that OP1 is the

same node as OPO. The parent of OP1 is called "P."

a
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The transformation is then to replace the root of subtree 1 (OP1) with the root of subtree 2 (OP2) as

the child of node P. The root of subtree 1 (OPI) replaces the root of subtree 3 as the child of the open

parenthesis. The root of subtree 3 replac.3 the root of subtree 2 as the (left) child of OPO.

The rippleup process is then applied again to the open parenthesis in its new location.

p p

opo P

Figure 5-10: Before and after macrotwiddleopen.

Macrotwiddleclose is symmetric to macrotwiddleopen.

p p

Figure 5-11: Before and after macrotwiddleclose.

5.8 Matchparens

The matchparens transformation is called by the nppleup process whenever the argument to

rippleup is either an open or close parenthesis and there is a matching parenthesis close by. A newly

added parenthesis is propagated through the tree by rippleup until it reaches either its correct

position or the root of the expression. To check for a match of an open (close) parenthesis, trace up

the left (right) ancestor links until a parenthesis, the root or a right (left) ancestor is found. If there is

parenthesis that is a matched pair or a close (open) parenthesis, then a new match has been found.

There are two cases:
n

1. The node Is exactly the matching parenthesis. The two nodes are merged into one
matched parentheses node.0'

" " = ka kJ ml,- -- = l~a~ m



27 October 1982 35

<parent> <parent>I I
( Opt.

Opt

oP2

0P2 0)i I

<child>

<child)

Figure 5-12: Before and after matchparens of ")" with "(."

After this transformation is performed, the rippleup process is applied to OPI since the
precedence relation between OP and <parent> may not be correct. Only parentheses

balancing and precedence relationships at the previous position of the moved
parenthesis may be made inconsistent by the matchparens transformation.

2. The parent is a matched parentheses. Then the node "steals" its matching parenthesis
from its parent and the parent is changed to the complementary type of unmatched
parenthesis.

<parent> (parent>
I I

()
I1 I

Opt Opt

0102 0P2

) )I I
<child> (child>

Figure 5-13: Before and after matchparens of ")" with "(."

In this case, the upper parenthesis node is no longer balanced. Rippleup must be called

to attempt to match it or migrate It to the correct location. Finally, dppleup must again be
applied to OP1, the child of the newly unmatched parenthesis.

5.9 Rippleup

The nppleup routine is not really a transformation, but a process consisting of a sequence of
transformations from the macro twiddle family and matchparens (described in Sections 5.6, 5.7, and

5.8) that migrate an operator or a parenthesis up the tree. The process stops when the root of the

tree is reached or when no additional changes are required or possible.
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Suppose the node being rippled up is an operator. Conceptually, it is compared to its parent.

*operator, and if the (right/lelt) precedence of the parent is greater than the (left/right)-precedence of

the node. then a twiddle(left/right) transformation is performed and the p-ocess is repeated with the

node at the higher location. As described in the twiddle transformation, if the subtrees already have

the correct precedence relations, then only the newly connected nodes need be checked. Actually,

macrotwiddle transformations are used as shortcuts. When the root or a matched parenthesis node is

reached, rippleup stops.

If the node being rippled up is a parenthesis node, then the macrotwiddleopen and

macrotwiddleclose transformations are used until either the root is reached or another parenthesis

"node is found. The matchparens transformation is used to balance parentheses and continue

rippleup if a matched pair or exactly matching parenthesis node is found- if a parenthesis of the same

type is found, then rippleup stops.

* The rippleup process is presented in pseudo-code in the appendix.

5.10 Rippledown

The rippledown routine is also not a new transformation but rather a sequence of twiddle

transformation applied repeatedly to a node until the node meets the precedence constraints

(parentheses balancing is not affected). Rippledown is applied at an operator node when it is

possible that the precedence relationships between the operator and its children may be incorrect.
This happens in the replace user command, where an operator is replaced by a selected operator.

The difference between rippleup and rippledown is that the former migrates a node up the tree when

its relationships with its ancestors are incorrect; the latter migrates a node down the tree to correct its

relationships with its descendants.

Rippledown starts by comparing the operator of the argument node to its left child, and then to its

right child. If the left child is an operator node whose right-precedence is greater than the left-

precedence of the argument, apply twiddleleft and then rippleup to the left child. If the left child Is not

migrated, then apply the symmetric process to the right child. If neither child moves, the new

operator is now in the correct place and the transformation halts. However, if either child is migrated,

then the process must be repeated recursively with the new children of the operator node. In the

case where the left child was twiddled, the original right child is still the right child of the operator and

* is considered in the recursion.
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The rippledown process is presented in pseudo-code in the appendix.
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6. Conclusions

6.1 Related Work

S." As discussed in Chapter 2, our algorithm is similar in several respects to the incremental parsing

algorithms developed by Wegman [11, 13, 12], Ghezzi and Mandrioli [2, 3] and Morris and Schwartz

(9]. These algorithms involve modifications to traditional parsing algorithms.

The Morris and Schwartz method is to modify the LL(1) parse tables to treat entire subtrees as

terminals in some cases. Their algorithm maintains a series of parse trees with links to the text buffer.

The text may be modified provided it obeys the "language constraint" .- the text up to the token

immediately preceding the cursor must be the legal beginning of a program. The text between two

such discontinuities is covered by a s6parate parse tree. Whenever a command attempts to move the

cursor beyond a discontinuity, the parse trees are patched back together using an extension of

traditional LL(1) parsing. However, full reparsing may be necessary in many cases.

The Ghezz, and Mandrioli method is to modify a shift-reduce LR parser (they discuss possible

extensions to LL parsers). The parser state is saved for each node in the entire syntax tree, with links

between each node and its corresponding production on the stack. Modifications are performed by

entering the new string representation of the desired subexpression and continuing the parse, using

an extension of a traditional LR parsing algorithm, from the indexed point in the parse stack to the

end of the new subexpression. The resulting incremental parser requires a considerable amount of

storage to record the configurations entered by the parser at each step of the analysis. It assumes

that the expression being parsed is syntactically correct, although it may be possile to remove this

restriction.

SThe Wegman method is an improvement over Ghezzi and Mandrioli. It also involves modifying a

shift-reduce LR(1) parser and permanent maintenance of the parser stack (which is stored in

spaghetti form for maximum sharing). The resulting parser makes no more than the minimal number

of changes required in the parse tree times a log factor of its height, whereas the earlier algorithm
-V may take time proportional to completely reparsing the program in the worst case. The algorithm

continues to operate in the face of syntactic errors in the modified portion of the program: it assumes

that the last token(s) entered is (are) the source of the error; the tree is not modified except to note

the position of these tokens in the display in relation to those represented in the legal syntax tree.

f-. Our method is quite different in several respects. It does not involve the extension of standard
K
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parsing techniques or the generation of a language-specific incremental parser from a grammar. The
algorithm is language-independent and completely table-driven. The required tables include lexical

- analysis information for recognizing tokens and the set of legal operators and their left and right

precedence s5

Our method does not involve additional data structures other than the syntax tree. In fact, we use

the standard syntax trees supported by most syntax-directed editors, which are generally more

compact than the parse trees generated by typical parsers [7). We are considering, however, adding

* two fields to each node in an expression tree to link the tokens in the left-to-right and right-to-left

order in which they appear in the display. The extra time required to create these links is negligible

* since the left and right tokens are generally found anyway as part of the algorithm, but once the links

we created, this earching time would be drastically decreased (to a constant). The primary costs

would be the xtra space for storing the links and the difficulties involved in reading and writing the

augmand snax tro to a le.

Another advantage of our method is the removal of the necessity for maintaining a text buffer In

parallel with the parse tree. In the other algorithms, changes are first made in the text representation

and then the text buffer is partially reparsed to update the parse tree. Our algorithm supports the

direct modification of the syntax tree without any intermediate changes in a text buffer. In tact, no

text buffer exists: the text on the display screen Is generated dynamically by unparsing the syntax

tree; only the syntax tree is stored internally. Input is stored as a string only until it has been

converted to a token by the lexical analyzer.

Uke the Wegman algorithm, our method handles syntactically Incorrect Input. In casm involving

only operators and terminals, our algorithm assumes the user intended to make these "mistakes" and

automatically inserts visible meta nodes and/or empty operators for the user to fill in later. In rae

involving parentheses, where there is an inherent ambiguity with function calls and array references,
4

the incorrect parenthesis triggers an error message while the user is still in context

The main disadvantage of our algorithm is that we have not yet worked out how to extend it to a

more general class of languages than those handled by a precedence parser.

5i

8We plan to augment the algorithm wth a mechanism to handle a table of dMerent tyPes of brackets used as parenteses,
plus a mechanism for handling thore language where the same brackets are used for other purposes, such as array
reremnces and function hWocascin.
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6.2 Extensions

The algorithm should be extendible to other programming language constructs such as non-binary,

prefix and postfix operators, function calls, array references, and statements (in at least those

programming languages that can be handled by precedence parsers). If operators are unambiguous

and the operands of arbitrary-arity operators are enclosed within delimiters, the extension to the

algorithm is straightforward. Problems arise in handling operators such as "-," which maybe either

binary infix or unary prefix, but this problem could be handled by a table of such ambiguous operators

and their properties. For example, suppose the expression is "a + b - c." In the ueual binary infix

case, deleting the "b" -would cause it to be replaced by a meta node.

/ '

' SNETA

Figure 6-1: "-" as binary infix operator.

However, in the unary case, the "-" token could be recognized as a unary operator whose single

child is the "c" identifier and the tree could be restructured to reflect this.

I -
a -

C

Figure 6-2: "-" as unary prefix operator.

The algorithm can also be extended to handle function calls and array references. The function

call or array reference would simply be recognized as a member of a special class of "tokens". For

example, adding the identifier "f" in front of an open parenthesis would cause the subexpression

following the parenthesis node to be treated as the first actual parameter of the function "f." A

comma (",") operator would be added to the algorithm to handle multiple parameters. A correct

subtree representing the function call would be treated as a terminal node by rest of the algorithm.

The keywords of statements, such as ":=",could be treated as operators with the same special

precedence as matched parentheses, easing the extension of the algorithm to staements. A difficulty

arises in the case of multiple or ambiguous keywords, such as "if -then" and "If-then-else." This

case could be handled by ignoring the "then" token and treating the "else" token similarly to the

close parenthesis: the "else" node is migrated up the statements list to the matching "if -then" and

changes the type of the node to "If-then-else." Statements and arbitrary-arity operators require that

the syntax-directed editor supports lists as well as fixed-silty nodes, which is true of all editors for

Srealistic programming languages.

------
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------ if-then

<exp> <statl>

--.. elseI I
<(stat2>

.star3)

Figure 6-3: Before restructuring.

----------------------f- then-else
I I I '

I <xp) (statl <stat2>

(stat3>

Figure 6-4: After restructuring.

Another extension to the algorithm is the capability to position the curoor at a consecutive

sequence of tokens as well as a single token. The extend-left and extend-right commands would

be provided for the user to stretch the cursor over adjacent tokens, one at a time. In elastic token

mude, the editing commands would be:

e construct: The effect of the elastic cursor on the construct command Is to permit a

atrng of tokens to be sequentially inserted from the command line, either before or after
the current cursor position.

e delete: Similarly, the effect on the delete command is to permit a string of tokens to be

sequentially deleted.

o clip: Clip copies the tree structure representing the selected sequence of tokens to-a

buffer.

e Insert: Insert adds the clipped structure to the syntax tree, restructuring as necessary.

Elastic mode construct and delete could be handled by repeated application of the existing

algorithm (although they could be speeded up considerably by special implementation). However,

clip and Insert of arbitrary sequences can not currently be handled. An easy way to do the

extension would be a copy command, which took a portion of a tree as input and copied each

successive token into a buffer or at the cursor position, using the normal construct command to

build the clipped tree or insert a clipped tree into the editing tree. The copy command could be

Implemented using the existing transformations. It is likely that some shortcut transformations could

also be found.

aI
* ". . . ...
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6.3 Complexity

*The algorithm is linear in time and space. The various construct commands are O(n + m), where n

is the number of nodes on the path between where a token is inserted in the tree and the root of the

tree and m is the length of the path to the right- or left-adjacent token. Only the nodes on this path,

plus a constant number of other nodes adjacent to each node on this path, are considered by the

construct algorithms. O(m) could be reduced to a constant by threading tokens according to their

left-to-right and right-to-left positions in the display.

The delete command is O(n + m), where n is the number of nodes between the deleted token and

the root or fringe of the tree, depending on the particular circumstances, and m is the length of the

path between the deleted token and its left- (or right-) adjacent token in the display. This (m) must be

considered since the cursor is moved to the left adjacent token by a delete. In the other commands,

the cursor remains at the new node or the selected node. As above, O(m) could be replaced by a

constant by threading the leaf nodes with both left-to-right and right-to-left links. This would require

, more space and involve modifications to the internal representation of the syntax tree.

The replace command is effectively a delete, without cursor motion, followed by a construct. It

takes 0(2n) 0(n).

The commands are implemented using the transformations presented in Chapter 5. The simple

transformations, such as fill, nest, unnest and twiddle require constant time. The rippleup

-transformation compares the node to its ancestors and uses the macrotwiddle transformations to

make the necessary changes in the tree. It looks at O(n) nodes. The rippledown transformation

compares the node to Its descendants and migrates the node down the tree. It looks at 0(2n) = 0(n)

nodes. In the worst case, n is the height of the tree for rippleup and rippledown. The collapse

transformation, which performs the bulk of an operator or terminal delete, requires O(m) time to find

the node to which to move the cursor and O(n) time to rippleup the node that replaces the deleted

node. As above, O(m) could be made constant by threading. Matchparens requires O(n) time to find

the matching parenthesis, plus 0(n) time for the rippleup invocations.

Thus the algorithm is linear in the depth of the expression tree. In practice, it is generally linear in

the number of nodes that actually must be migrated by the transformations, but in the worst case

additional nodes may be considered.

Since no auxiliary data structures are created, space is either the same as time to reflect the cost of

the activation records for the recursion, or 0(1) if recursion is considered free.
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6.4 Implementation

We have implemented our incremental expression parsing algorithm for binary infix operators in

* Maclisp on Tops-20. This is a stand-alone implementation, and is not embedded in a syntax-directed

* editor. It provides the construct after, construct before, construct at, delete arnd replace

* commands and displays the tree by unparsing it into infix form. Both structure-oriented (next,

previous, In, out) and display-oriented (left, right) cursor commands are supported. All'trees are

constructed using a small set of operators and identifiers, both of which can be extended by

augmenting a table.

The complete algorithm is in the process of being implemented as part of the command interpreter

of the Display Oriented Structure Editor (DOSE) system [1, 5] being developed by the Software

* Technology group at Siemens Corporation Corporate Research and Technology at Princeton, NJ.

The initial implementation is in and for PERO Pascal on the Three Rivers Computer Corporation

* PERO personal computer.

6.5 Summary

This document describes an incremental parsing algorithm significantly different from other

approaches to incremental parsing for syntax-directed editors. Our algorithm does not require

maintenance of the parser state or a text buffer. It requires no data structures other than the syntax

* tree Itself. Our algorithm does not rely on modifications to a traditional parser. It uses a small set

(less than a dozen) of tree transformations that are sufficient to handle a superset of the precedence

languages. All language-dependent information is contained in the operator precedence table. Our

* algorithm modifies the tree Immediately, during each editing operation. The resulting expression can

be immediately displayed by refreshing the screen. Finally, our algorithm is robust In the face of

certain types of syntax errors. And, in contrast to the typical template-driven approach to syntax-

* directed editing, the user edits In terms of the tokens as they are displayed on the screen rather than

* in terms of the internal syntax tree.
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I. Appendix

This appendix includes a table of operator precedences, a figure that associates each procedure

with the set of transformations it uses and a pseudo-code version of the two Ripple transformations

and the algorithms that implement the various user commands.

operator I left-precedence I right-precedence

* I 1 f. I
- I 1 I 2

I 3 I 3
I 6 I5

Figure I-1: Table of Operator Precedences.

K

basic compound calling
transformations transformations procedures

S+------------------------------4--- ------------------------- 4----------------------

inseting fill rippleup
identifiers i nest (eight/left) I

- and I twiddle (right/left) I macrotwiddle I
*'i operators | I (right/left) I

S4------------------------------4----------------------------4--------- --------------

inisertIng I matchparens macrotwiddle
.. parentheses I I (openlclose) I

S------------------------------- .4----------------------------4-----------------------

deleting I unnest I I rippledown
replacing I collapse '
and swappingl I

Figure 1-2: Summary of the Transformations

I'
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procedure flippleljp (tree Mods)
var parent :Node
begin

if ( ot IsRoot(tree) and not IsLear(tree)) then
if ( sParens(tree) ) then

if (not MatchParens(tree)) then
select ( GetParenslype(tree) ) of

open: MacrolwiddleOpen( tree)
close: MacrolwiddleClose(tres)
match- RippleUp(parent)

endsel oct
else it ( not Istatch(parent) ) then

select ( GetSide(tree) ) of
right: MacroTwiddloLeft(tree)
loft: MacroTwiddleRlght(tree)

endsel oct
endif

end it
end

* procedure RippleDown (tree :Node)
var left. right : Mode
begin

left :~GetLeftChlld(tree)
right :=GetRlghtChild(tree)

A if ( IsOp(left) ) then
if (.LeftPrec(GetOp(tree)) )RigA'trec(GetOp(left)) )then.

TwlddleLeft(tree, left)
RlppleUp( left)
R ippleDown( tree)

* endif
endif
if ( IsOp(rieht) t hen

If ( RlghtPrec(GetOp(tree)) > ILeftPrec(Got~p(right)) )then
TwiddleRlght(tree. right)
RlppleUp(right)
Rlppleoown( tree)

endif
endif

end

*procedure ConstructAfter
* var token :String

type :TypeOfToken
begin

while (true ) do
read(token, type)
select ( type ) of
Op: ConstrOpAfter( token)
OPEN: ConstrOpenAfter
CLOSE: ConstrCloseAfter
TERM: ConstrTeruAf ter( token)
end select

edendwhile

procedure ConstrOpAfter ( newop :String)
var temp N ode
begin

temp :a FindRightToken(Cursor)
if (IsEmpty~p(temp) ) then

* FillOp(temp. newop)
Cursor :s temp
RippleUp(Cursor)
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else
select ( Gct.type(.Cursor) )of
OP. OPEN:

'Jestflight(teinp, newop)
Cursor :a GetParent(tetp)
AipploUp(Cursor)

TERM. CLOSE:
NsstLeft(Cursor. newop)
Cursor :s GetParent(Cursor)
RippleUp(Cursor)

sndsel Oct
endi?

end

V.procedure ConstrTermAfter ( newid :St-ring
var temp :Nods
begin

select ( GetType(Cursor) ) or
OP. OPEN:

temp :a Find~ightToken(CursoO)
If ( not Ist~eta(temp) ) then

NestRlght(temp. 'SOP')
temp :- GetLeftChil d(Get.Parent( tamp))

end if
Cursor :- temp
FillMeta(Cursor. newuld)

TERM. CLOSE:
NestLeft(Cursor, 'SOP')
tamp :a GetRightChild(GetParent(Cursor))
Curser :- tamp
FillMeta(Cursor, newid)

endsol act
end

procedure ConstrOpenAtter
var tamp : Node
begin

select ( GetType(Cursor) )of
OP, OPEN:

temp :s FindRlghtTeken(Cursor)
NestRight(tamp. '(-)
Cursor :- GetParent(temp)
RlppleUp(Cursor)

TERM, CLOSE:
ero

endsel act
end

procedure ConstrCloseAfter
begin

select ( GetType(Cursor) )of
OP. OPEN:

error
TERM. CLOSE:

NestLeft(Cursor,')
Cursor :- GetParent(Cursor)
RipploUp(Cursor)

edendselect

procedure Construct~efore
var token :String

type :TypeOfToken
begin

read(token, type)
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select (type )or
OP: ConstrOp~erore( token)
OPEN: ConstrOpenBerore
CLOSE: constrClose~efore
TERN: ConstrTermBefore(token)
endsel ect

end

procedure ConstrOpBefore (newop :String)
var temp :Mode
begin

temp :~FindLeftToken(Cursor)
if ( IsEmpty~p(Lemp) ) then

FillOp(temp. newop)
Cursor :v temp
RipploUp(Cursor)

else
select ( GetType(Cursar) )of
OP, CLOSE:

NestLeft( temp. newop)
Cursor :- GetParent(temp)
RippleUp(Cursor)

TERM. OPEN:
NestRlght(Cursor. newop)
Cursor :- GotParent(Cursor)
RippleUp(tursor)

endseloct
andit

etnd

procedure ConstrTermaefore (newid :String)
var tomlp :Mode
begin

select ( GetType(Cursor) ) of
OP. CLOSE:

tamfp :2 FindLeftToken(Curser)
if ( not Ismeta(temp) ) then

NestLett(tomp, 'SOP')
temp :- Getlght(GetParent(temp))

end if
Cursor := temp
FillMota(Cursor. newuid)

TERM. OPEN:
MestRight(Cursor. $SOP')
temp := GotteftChild(GotParent(Cursor))
Cursor := temp
FlllMeta(Cursor, newid)

endsel ect
end

proceduare ConstrOpen~efore
var temp : Mode
begin

* select ( GotType(Cursor) )of
* OP. CLOSE:

error
TERM. OPEN:

NestRight(Cursr.(*
Cursor :- GetParent(Curser)

* RlpploUp(Cursor)
endselect

end

procedure ConstrCloselefore
begin

select (GetType(Cursor) )of
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OP. CLOSE:
tamp :a FindLeftTokon(Cursor)
NestLeft( temp.
Cur?.or -a eLParenttemp)
RippleUp(Cursor)

TERM. OPEN:
er ror

endselect
end

p~rocedure ConstructAt
var token :String

type :TypeOtTokon
begin

if (IsEmpty~p(Cursor) )then
read(tokon. type)
if ( type 1OP ) then

FillOp(Cursor. token)
N ippi oUp(Cursor)

else
error

else if ( IsMota(Cursor) )then
read(token, type)
select ( type ) of
TERM:

Fit lMeta( token).
OP, CLOSE:

testLeft(Cursor, token)
RipploUp( token)

OPEN:
NestRight(Cursor, token)
RipploUp(token)

endselect
else

error
endif

* end

* procedure Delete
var node : Noder
beg in

node :m Cursor
MoveCursorLeft
select ( GetType(node) )of
OP: OeleteOp(node)
OPEN: DeleteOpen( node)
CLOSE: DelateClose(node)
TERM: DeleteTerm(node)
endselect

end

procedure DeleteOp (node node)
var temp : Nods
begin

temp :v FindRightTaken(node)
if ( IsMeta(temp) ) then

CoillapseLeft( node, temp)
else

teo" :m FindLeftToken
it ( IsMeta(temp) ) then

CollapseRight(nods, temp)
else

Put~p(nod*, 'SOP')
Rippl@Down(nide)
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endif
end if

* end

procedure DeleteTerm (node Mode
var temp, Node

* begin
temp :~rindeightTokon(nods)

if ( IsEmpty~p(tomp) ) then

Colpeih~ep node)

temp :=FindLeftToken(nods)
if ( IsEmpty~p(temp) ) then

CollapsoLstt(temp. node)-
else

Fillfeta(node. 'SMETAI)
endif

endif
* - end

procedure Delete~pen (node Node)
var child Mode
begin

child :'GetChild(nods)
it ( IsMatchParen(node)) then

PutParon(node. )
RipploUp(node)s RippleUp(child)

else
UnNostftight(node)
RippleUp(chtld)

* - endif
* end

procedure OeleteCloso
var child Mode
begin

child :~GetChild(node)
if ( Is~atchfaren(node)) then

PutParen(node. Q
Rippl*Up(nodo)
RipploUp(child)

else
Un~estLeft( mode)

* - NippleUP(child)
endif

end

procedure Replace~p
var newop String

type TypeOtToken
begin

read( newop. typ.)
it ( (type uOP) AND (GetType(Cursor) *OP) )then

Put~p(Cursor, newop)
U RippleUp(Cursor)

RippleDown(Cursor)
else

error
endif

end


